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LETTER TO THE EDITOR 

A new treatment of enclosed quantum mechanical systems 

F M Fernindez and E A Castrot 
INIFTA, Seccibn Quimica Tebrica, Sucursal 4-Casilla de Correo 16, La Plata 1900, 
Argentina 

Received 1.5 September 1981 

Abstract. A simple and helpful method for calculating approximate eigenvalues cor- 
responding to an enclosed quantum mechanical system is presented. The hydrogen atom 
enclosed within a spherical surface is chosen as an illustrative example. Numerical 
comparison with exact results shows very good agreement. 

Quantum mechanical systems subjected to non-trivial boundary conditions have a 
marked usefulness in several branches of physics. Special interest has been shown 
during the last few years in the harmonic oscillator model (Vawter 1973, and references 
cited therein, Consortini and Frieden 1976, Rotbar 1978, Aguilera-Navarro etal 1980, 
FernCindez and Castro 1981a, b) and the hydrogen atom enclosed within boxes with 
impenetrable walls. 

The purpose of this communication is to present a simple and helpful method that 
allows one to calculate, in an approximate way, eigenvalues corresponding to enclosed 
systems, whenever the solutions of the same model controlled by trivial boundary 
conditions are known. 

As an illustrative example, we consider the ground state of the hydrogen atom 
model enclosed inside a spherical surface with impenetrable walls. 

The radial function f(r) of the total wavefunction is determined by the following 
differential equation (in atomic units): 

- i f” - ( l / r ) f ’ - ( l / r ) f=Ef  (1) 

f (R)  = 0. (2) 

f ( r )  = F( r )  exp[-G(r)l, (3) 

with the boundary condition 

The method consists in proposing a solution with the particular form 

m 

s = l  
G ( r ) =  1 gsrs. (4) 

The appropriate expression of F ( r )  for the ground state of our model is 

F ( r ) = r - R .  ( 5 )  
The substitution of equations (3)-(5) in equation (1) permits us to obtain the coefficients 

i To whom correspondence should be addressed. 
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g, as a function of E :  

-R(s+l)(s+2)g,+l+s(s+3)gs- C (s-t)tgs-rgr+R (s+1-t)gs+i-tgt 
S s+l 

t = O  r=o 

= 2ESs2+ 2(1 -RE)6,1+ 2(1- R)6,o. ( 6 )  

A particular example of the propounded solution allows us to arrive at exact values 
when R = 2 and R = 00, because oPthe following: 

For different R-values we can obtain successive approximations E($, R )  for the energy 
eigenvalue via the general condition 

gs+l(R) = 0. (9)  

The first two approximations are 

E(1 ,  R ) = 3 / 2 R 2 - i ,  

E(2,  R )  = - i- 3/2R2 + 9/R2(R + 1). 

Numerical results calculated with formulae (10)-(11) are displayed in table 1, together 
with those values reported by Lude5a (1977, and references cited therein). It can be 
seen that values given by equation (1 1) are noticeably near to exact ones associated with 
the ground state of the enclosed hydrogen atom for the whole range of R-values. The 

Table 1. Ground state energy for the hydrogen atom enclosed within a sphere of radius R. 

R E (equation (10)) E (equation (11)) E (Ludefia) 

0.8100 
1.0100 
1.4480 
1.7110 
1.9020 
2.0000 
2.2005 
2.4720 
2.6000 
2.8070 
3.0413 
3.2130 
3.5287 
3.7592 
4.0062 
4.4153 
4.7916 
5.0200 
5.3706 
5.8010 
6.2253 
43 

1.786 
0.970 
0.215 
0.012 

-0.085 
-0.125 
-0.190 
-0.255 
-0.278 
-0.310 
-0.338 
-0.355 
-0.380 
-0.394 
-0.407 
-0.423 
-0.435 
-0.440 
-0.448 
-0.455 
-0.461 
-0.500 

4.792 
2.419 
0.538 
0.122 

-0.057 
-0.125 
-0.229 
-0.321 
-0.352 
-0.390 
-0.421 
-0.438 
-0.461 
-0.472 
-0.481 
-0.492 
-0.498 
-0.500 
-0.503 
-0.505 
-0.507 
-0.500 

4.392 
2.301 
0.540 
0.126 

-0.056 
-0.12s 
-0.232 
-0.327 
-0.359 
-0.398 
-0.428 
-0.445 
-0.466 
-0.476 
-0.483 
-0.491 
-0.493 
-0.496 
-0.498 
-0.499 
-0.499 
-0.500 
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only inconvenience posed by this analytic expression consists in the fact that 

{aE/aR}(2, R )  > 0 

for large R-values. However from a theoretical viewpoint it is well known that E ( R )  is a 
decreasing monotonic function. The present method can be applied without further 
modifications in order to study the bounded isotropic harmonic oscillator and the 
one-dimensional oscillator model (Vawter 1973, and references cited therein, Consor- 
tini and Frieden 1976, Rotbar 1978, Aguilera-Navarro et a1 1980, Fernindez and 
Castro 1981a, b). 

The analysis of excited states makes it necessary to carry out some changes. The first 
excited level of our illustrative model is the 2p ( n  = 2;  1 = 1). In this case the difficulty is 
solved by choosing the pre-exponential function 

Fzl(r) = r ( r  - R) .  (12) 
This choice ensures the attainment of the correct result when R = 6 or R = 00. 

zero R 1  < R. Then 
The next excited state is the 2s ( n  = 2; 1 = 0), whose eigenfunction has an interior 

F2&) = ( r  - Rl)(r  - R). (13) 

Eio(R1) = Ezo(R). (14) 

This new parameter R1  can be written as an R function, taking into account that 

Higher excited states may be studied in a similar fashion. 
Although mathematical formulae for eigenvalues become more complicated with 

increasing quantum numbers n and 1, the treatment is very simple, as shown above. 
There is an easy procedure to check the goodness of a given approximate function. 
When f(r) is the normalised radial function of the Schrodinger equation for a central 
field problem subjected to boundary conditions (2), then the fulfilment of the relation 

aE/aR = -$R2/f’(R)I2 (15) 

is verified at once. This equation enables us to examine the value of E ( R )  and its slope 
for those particular R-values where the exact solution is known. For the hydrogen atom 
we obtain the following results: 

aE....,(R = 2)/dR = -1/4(e2-7) = -0.642 580, 

aE(1, R =2)/aR = -:= -0.375, 

These results explain why the graph E(2 ,  R )  is nearer to the exact function than 

We deem that the displayed results show in a plain manner that the method 
presented in this Letter seems to be very promising for studying lower states of any 
bounded quantum mechanical system. At present, work along these lines is being 
carried out in our laboratory and results will be given elsewhere. 

aE(2, R = 2)/aR = -:= -0.625, 

E(1,  R) .  
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